

Canada

Natural Resources Ressources naturelles Canada

A paradigm shift in empirical growth and yield modelling: towards climate-sensitive models and large-area predictions

> Mathieu Fortin Canadian Forest Service, Canadian Wood Fibre Centre mathieu.fortin@nrcan-rncan.gc.ca

Fig. 7. Aspect of a simulated forest stand generated by the visualization module of SILVA (Pretzsch and Seifert, 1999). The tree in the center of the picture is marked as a selection tree, three competitors have been marked for removal.

Source: Pretzsch et al. 2002

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Canada

Natural Resources Ressources naturelles Canada

Evaluation of Competition Indices in Individual Tree Growth Models

Fanist Science, Vol. 41, No. 2, pp. 360-377

GREGORY S. BIGING MATTHIAS DOBBERTIN

435

Cun. J. For. Res. 33: 435-443 (2003)

Predicting basal area increment in a spatially explicit, individual tree model: a test of competition measures with black spruce

Daniel Mailly, Sylvain Turbis, and David Pothier

Outline

- 1. Climate change and climate models
- 2. Climate sensitivity in forest growth models
- 3. Disturbances and upscaling

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Outline

1. Climate change and climate models

Climate sensitivity in forest growth models
 Disturbances and upscaling

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

atural Resources Ressources naturelles anada Canada

Timeline

1988

Intergovernmental Panel on Climate Change (IPCC)

1992

Earth Summit – Rio

 United Nations Framework Convention for Climate Change (UNFCCC)

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

anada

atural Resources Ressources naturelles Canada

The Keeling curve

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Natural Resources Ressources naturelles Canada Canada

Climate change and climate models

2021

- Sixth Assessment Report ۲
 - Shared Socio-economic Pathways (SSP)
 - **Global Surface Air** Temperature

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

IPCC 2021. Climate Change 2021: The Physical Science Basis. p.571

Climate models

Human activities

- $-CO_2$
- Non CO₂
- Albedo
- Land use

The Canadian Earth System Model version 5 (CanESM5.0.3)

Neil C, Swart^{1,3}, Jason N, S, Cole¹, Viatcheslav V, Kharin¹, Mike Lazare¹, John F, Scinocca¹, Nathan P, Gillett¹, James Anstey¹, Vivek Arora¹, James R, Christian^{1,2}, Sarah Hanna¹, Yanjun Jiao¹, Warren G, Lee¹, Fouad Majaess¹, Oleg A, Saenko¹, Christian Seiler⁴, Clint Seinen¹, Andrew Shao³, Michael Sigmond¹, Larry Solheim¹, Knut von Salzen^{1,3}, Duo Yang¹, and Barbara Winter¹

 ¹Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, V8W 2P2, Canada
 ²Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, BC, Canada
 ³University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
 ⁴Climate Processes Section, Environment and Climate Change Canada, Victoria, BC, V8P 5C2, Canada

Correspondence: Neil C, Swart (neil.swart@canada.ca)

Swart et al. 2019. Geoscientific Model Development 12(11): 4823-4873

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Outline

1. Climate change and climate models

2. Climate sensitivity in forest growth models

3. Disturbances and upscaling

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

atural Resources Ressources naturelles anada Canada

Climate and growth models

- Web of Science
 - forest growth model empirical
 - forest growth model empirical climate
 - forest growth model « process-based »
 - forest growth model « process-based » climate

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

ral Resources Ressources naturelles ada Canada

Canada

Empirical models

Process-based models

© His Majesty the King in Right of Canada, as represented by the

Canada

Natural Resources **Ressources naturelles** Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Process-based modelling

- 3-PG (Landsberg and Waring 1997)
 - Purely process-based

- Triplex (Peng et al. 2002)
 - Hybrid (combines 3-PG + empirical features)

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

itural Resources Ressources naturelles Inada Canada

Fig. 1. Flow diagram showing the key pools and fluxes of carbon, nitrogen, and water between the forest ecosystem and external environment in TRIPLEX 1.0. Rectangles represent pools or state variables. Ovals represent simulated processes. Arrows refer to carbon (C), nitrogen (N) and water flows. GPP is gross primary productivity.

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Source: Peng et al. 2002

Carbon allocation

Monthly time steps

Canada

Natural Resources Ressources naturelles Canada

Empirical growth modelling

• Stand-level models

Transition matrices (1960s)

- Individual-based models (1970s)
 - Distance-dependent
 - Distance-independent

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Some models used in forest management planning in Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Canada

Natural Resources **Ressources naturelles** Canada

Climate sensitivity implementation

Re-expressing some variable 1.

Climate-sensitive site index models for N Clara Antón-Fernández, Blas Mola-Yudego, Lise Dalsgaard, and Rasn

Can. J. For. Res. 46: 794-803 (2016

Potential change in lodgepole pin distribution under climatic change

Robert A. Monserud, Yuging Yang, Shongming Huang,

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Source: Monserud et al. 2008

Canada

Jatural Resources Ressources naturelles Canada

Climate sensitivity implementation

- 2. Including climate variables directly in individual-based models
 - Tree-ring data
 - Permanent-plot data
 - Diameter or basal area increment
 - A large variability in the climatic variables and their effects

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

al Resources Ressources naturelles da Canada

Source: Oboite and Comeau 2021

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Canada

Natural Resources **Ressources naturelles** Canada

Mortality

Recruitment

Species migration

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Picea engelmannii

Canada

Vatural Resources **Ressources naturelles** Canada

Recruitment

Source: Fortin et al. (in press)

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Climate variables

• 30-year normals

latural Resources

Canada

 What about the interannual variability?

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Ressources naturelles

Canada

Source: BioSIM Web API

Climate variables

Integrating annual climate variables in growth models?

Source: de Dios Garcia et al. 2018

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Canada

latural Resources Ressources naturelles Canada

Climate sensitivity

Climate sensitivity vs climate change sensitivity

 What happens when other explanatory variables are dependent on climate (e.g. forest type, SI)

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

ral Resources Ressources naturelles ada Canada

Climate sensitivity

- Artemis
 - Individual based
 - Distance
 independent
 - Available for 25 forest types

Source: Government of Quebec, 2022

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Natural Resources Ressources naturelles Canada Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Natural Resources Ressources naturelles Canada Canada

Outline

1. Climate change and climate models

- 2. Climate sensitivity in forest growth models
- 3. Disturbances and upscaling

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

atural Resources Ressources naturelles anada Canada

Disturbances

Changes in the disturbance regimes

- Intensity
- Frequency

atural Resources

Canada

Severity

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Ressources naturelles

Canada

Source: Muratov 2001

Disturbances

Adapting mortality modelling to known disturbances

$$log(-log(1 - \pi_{ijk})) = \beta_0 + \beta_{1,s} + \beta_2 dbh_{ijk} + \beta_{3,s} log(dbh_{ijk}) + \beta_4 BAL_{beech,ijk} + \beta_{5,s} BAL_{oak,ijk} + \theta_{6} + v_k W_{ik} + \theta_7 D_{ik} + \beta_{8,s} Th_{ik} + \beta_9 \times log(\Delta t_{ik})$$

Source: Manso et al. 2015

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Disturbances

Source: Melo et al. 2019

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Large-area predictions

What do we really know?

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Canada

atural Resources Ressources naturelles Canada

Human responses to uncertainty

- Averaging what we know
 - Consolidating our knowledge

- Bringing in new information
 - Remote sensing

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

al Resources Ressources naturelles da Canada

Averaging what we know

Volume

The « average » plot

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Canada

Natural Resources **Ressources naturelles** Canada

Age

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Uncertain input variables

- Jensen's (1906) inequality •
- Average the predictions not ٠ the input variables

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Stochastic models

Source: Fortin 2016

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

UNCLASSIFIED - NON CLASSIFIÉ

Avoiding Jensen's inequality

Parametric bootstrap estimators

Age

- Pfefferman and Tiller (2005) ٠
- Fortin et al. (2018) ٠

olume

Canada

Volume

Age

Age

Large-area predictions

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Source: Melo et al. 2019

Climate sensitivity implementation

 Predict climate-dependent variables (SI)

Include climate variables directly in the model
30-yr normals or annual values ?

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

- 2. Different species responses
 - Warmer climate does not mean better growth

Boreal species adapted to cold environment

Species migration is lagging

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

ral Resources Ressources naturelles ada Canada

Disturbance regimes are changing
 Accounting for disturbances in growth models

Stochastic simulations

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

ural Resources Ressources naturelles nada Canada

- 4. We need large-area predictions
 - Different methods of upscaling
 - Beware Jensen's inequality
 - Bootstrap estimators allow for error propagation in these predictions
 - Need for fully stochastic models though

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

ral Resources Ressources naturelles ada Canada

BioSIM Web API

http://repicea.dynu.net/BioSim/BioSimWeather?lat=48.5&long • =-74.5&from=2000&to=2016&model=DegreeDay_Annual

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Thanks for your attention

Rubén Manso Lara C. de Melo **Christina Howard José Riofrio Bianca Eskelson** Juha Metsaranta **Derek Sattler**

mathieu.fortin@nrcanrncan.gc.ca

Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

