

Incorporating regeneration dynamics and reforestation treatment effects into growth and yield models

W. Richard Dempster Growth and Yield Innovations Conference Canmore, Alberta | June 18-21, 2023

Outline

- 1. The road less travelled Challenges that arise in incorporating regeneration dynamics in growth and yield models, and from failing to do so
- 2. The right track? Local progress in meeting the challenge: the FGrOW Regenerated Lodgepole Pine Project
- 3. The way forward Opportunities for innovation to create better and more widely applied solutions

Terms and definitions

- **Tree:** a woody perennial plant, with a single stem or trunk capable of bearing lateral branches
- Ingress: the ingrowth of naturally regenerated trees into a specified minimum size class
- Juvenile mortality: density-independent death of trees occurring prior to crown closure and onset of self-thinning
- **Regeneration phase:** initial period of stand development following harvesting, during which ingress and / or juvenile mortality are occurring
- **Regeneration:** the production, survival, growth, and germination of seed; clonal reproduction; and the survival and growth of trees until the end of the regeneration phase

The road less travelled **Representation of** regeneration dynamics in growth and yield models

- Hanbury-Brown *et al*. (2022)
 - Forest regeneration processes poorly represented in Earth system models
- Burkhart and Tomé (2012)
 - "Models of the juvenile phase of stand development are relatively rare, but there are some notable exceptions"
 - Responses to vegetation management, initial spacing, site preparation and fertilization
 - Confined to growth and survival of plantations
- Ferguson *et al.*(1993)
 - FVS regeneration establishment models
 - Recognized two-state systems (e.g. stocking probability, stocked-plot attributes)
- Fortin and Deblois (2007), Li *et al*. (2011)
 Combined probability distributions
- Worth *et al*. (2008)
 - $_{\rm O}$ Seed production and dispersal

Regeneration modelling

North America

Spatial Distribution
C Random
Clumped
Clumps/ha: 70
Variation: 8.0
Change the Regen Pattern

Representation of regeneration dynamics in growth and yield models

British Columbia

TASS III ver. 4.0.9 September 2017

Representation of regeneration dynamics in growth and yield models

British Columbia

SORTIE Coates *et al*. 2003

Growth and Yield Projection System

- Stand-level model developed and supported by Alberta government
- Validated against permanent sample plots in postharvest regenerated stands
- Initialized from regeneration performance surveys 12-14 years after cut

Representation of regeneration dynamics in growth and yield models

Alberta

Huang et al. 2009

Mixedwood Growth Model (MGM)

- Individual tree-based stand growth model for the boreal forest
- Recently validated against large dataset from fireorigin and post-harvest untreated permanent sample plots age >12 years
- Initialized by tree list

Representation of regeneration dynamics in growth and yield models

Alberta

Bokalo *et al*. 2013 Comeau *et al*. 2021

Factor	Against	For
Phase	short	long
Planting	yes	no
Prediction	hard	easy
Profession	silviculture	mensuration
Principles	evolving	established
Practice	art	science
Policy	implicit	explicit

Why regeneration modelling has received little attention

- Expensive and intrusive
- Variable need and justification
- Increasingly opposed
- Increasingly high
 investment risk

- Expensive and intrusive
- Variable need and justification
- Increasingly opposed
- Increasingly high investment risk

- Expensive and intrusive
- Variable need and justification
- Increasingly opposed
- Increasingly high
 investment risk

- Expensive and intrusive
- Variable need and justification
- Increasingly opposed
- Increasingly high
 investment risk

Natural regeneration

- Major component of stand dynamics and ecosystem maintenance
- Prolific for some species and sites
- But variable in abundance, composition and timing

Natural regeneration

- Major component of stand dynamics and ecosystem maintenance
- Prolific for some species and sites
- But variable in abundance, composition and timing

Linking Regeneration Standards to Growth and Yield and Forest Management Objectives

Prepared by Alberta Reforestation Standards Science Council

For Alberta's Minister of Sustainable Resource Development

August 29, 2001

Why regeneration models are needed in Alberta

Policy

- Forest management on a sustained yield basis required by law
- Reforestation standards linked to growth and yield

Ye	ar Year	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13	Year 14
Apply treatments, subdivide openings, declare reforestation standards. In ARIS, populate X_OPEN and X_REFRES tables. Reforestation complete (April 30) Apply treatments. In ARIS, populate X_OPEN and X_REFRES tables. Year of Cut. Create openings, apply treatments, and make stratum					To	Re NS be compl	Re NS streatment SR survey eted no so	To I 8 y Tim Rei NS dreatment I SR survey in required fo in YEAR 5.	be comp ears after ber Yea treatmen R survey required n YEAR or	l er the end of r of Cut (Apr t required fc y in YEAR 7. for 6.	er than the ii 30). or Pr To be con years aft Year of (of ret out	To I sociafte Tim (Ma erformance mpleted no ter the end Cut (April 3 forestation tcomes re	be comple oner than 1 ar the end ober Year (ay 1). e Survey o later that of the Tin 30). Evalua or responsiti lative to fo	n 14 nber ation bility prest
treatments, ar declarations. X_OPEN, X_H X_REFRES ta	nd make stratur in ARIS populat ARVST, and bles.	n te		- 0	tha of t (Ma	n 4 years he Timbe sy 1).	after the or r Year of (end Cut	re N Y	equired for ISR survey is EAR 8.	n	manageme	ent objecti	ves.

ESTABLISHMENT SURVEY

PERFORMANCE SURVEY

Why regeneration models are needed in Alberta

Policy

- Reforestation Standard of Alberta (RSA)requires performance surveys
- Conducted 12 14 years after cut
- Linked to long-term growth and yield

RLP ingress trends - pine

- Non-planted non-thinned sample plots in FGrOW RLP trial
- Shaded area indicates RSA
 performance assessment period

Why regeneration models are needed in Alberta RLP ingress trends

Black spruce

White spruce

EPH ingress trends - aspen and pine

- Empirical post-harvest dataset
- Stand density trajectories for aspen (AW) and lodgepole pine (PL) at the PSP level by max density quartile, for the 2nd, 3rd, and 4th quartiles (panels a, b, and c, respectively)
- The vertical red line
 indicates age 13
- Copyright © 2020 Robert E. Froese

21

- EPH ingress trends black and white spruce
- Empirical post-harvest dataset
- Stand density trajectories for black spruce (SB) and white spruce (SW)at the PSP level by max density quartile, for the 2nd, 3rd, and 4th quartiles (panels a, b, and c, respectively)
- The vertical red line
 indicates age 13
- Copyright © 2020 Robert E. Froese

22

Regeneration phase duration

- Actual density curve for ingress (ABCD) culminates at end of regeneration phase (point C)
- Density models for growth phase have negative slopes (CD, BE)
- Model initiated at C gives best estimate of curve CD
- Model initiated at earlier
 performance survey (point B)
 incorrectly predicts curve BE

Juvenile mortality

- Observed in regenerated lodgepole pine trial, nonthinned planted stock
- Independent of pine density
- Varies with natural subregion, aspen density, soil moisture, latitude, evapotranspiration, spring temperature, depth of organic soil, site preparation
- Mortality agents: Warren root collar weevil, *Armillaria* root disease, mammals, western gall rust etc.

Why regeneration models are needed in Alberta Making research results useful to forest managers

- Reforestation treatments and regeneration performance assessments take place before the regeneration phase of stand development is complete, therefore requiring growth and yield models predicting their outcomes to take into account regeneration dynamics.
- Existing growth and yield models fail to represent ingress of natural regeneration and variation in juvenile mortality, and therefore do not reliably predict future timber yield or species composition.
- Reforestation treatment decisions are increasingly being challenged, and increasingly subject to risk, therefore requiring stronger support and justification.
- Usefulness of regeneration research to practitioners is enhanced if results can be consolidated into quantitative decision support tools.

Why regeneration
models are needed
in Alberta

Summary

The right track? FGrOW Regenerated Lodgepole Pine Project

Regenerated Lodgepole Pine (RLP) Trial

$$y = a + \sum (b_i X_i)$$

where:

- *y* = predicted stand-level attribute
- b_i = vector of regression coefficients
- X_i = vector of independent variables

a and b_i are coefficients

- Applied to predict top height, age, density, trees per stocked sub-plot, quadratic mean diameter
- Multiple linear regression
- Analysis of variance / covariance
- Linear and categorical variables
- Linear variables transformed as appropriate

Analytical methods Standard least squares (SLS)

$$s = (1 + e^{-(\Sigma \beta i X i)})^{-1}$$

where:

- *s* = stocking probability
- $e\,$ = the base of natural logarithms
- β_i = vector of regression coefficients
- X_i = vector of independent variables
- Applied to predict stocking probabilities and % stocking
- Used in combination with SLS to estimate density of secondary species i.e. density = stocking probability x trees per stocked sub-plot

Analytical methods Logistic regression

 $F(x) = 1 - \exp[-(x/B)^{C}]$

where:

- F(x) = cumulative density
- x = dependent variable (number of trees per stocked plot or size class)

B = Weibull scale parameter

C = Weibull shape parameter

- Weibull scale and shape parameters estimated as SLS functions of treatment and site variables
- Solved for dependent variable by $x = B[-\ln(1 F(x))]1/C$
- Applicable to estimate number of trees per stocked sub-plot, diameter class, or height class
- Could be used with pseudo-random number generator to simulate tree lists for input into individual tree growth models

Analytical methods Cumulative density functions

- Statistical significance
- Goodness of fit and contribution to explained variation
- Independence
- Biological rationality
- Data availability for user inputs

Analytical methods Criteria for selecting predictive variables

Consolidation

- Regeneration model predicts juvenile stand attributes from treatment and site inputs
- Output at 18 years used to initialize growth and yield model

Cohorts		AW			PLp			PLn		S	В	 SV	V
Attributes	Ht Age	S% Den	Dbh BA	Ht Age	S% Den	Dbh BA	Ht Age	S% Den	Dbh BA	Ht Age	S% Den	Ht Age	S% Den

Cohorts		AW			PLp			PLn		S	В	 S۷	V
Attributes	Ht Age	S% Den	Dbh BA	Ht Age	S% Den	Dbh BA	Ht Age	S% Den	Dbh BA	Ht Age	S% Den	Ht Age	S% Den

Regeneration model: dependencies on treatments

Regeneration model: dependencies on site variables

Regeneration model: dependencies within and between cohorts

FRIPSY

- Crispy Chicken Chips Snack
- Only €0.13
- Superior long-lasting recipe fun snack
- Superior flavor
- Unbeatable prices
- Undeniable fun

Foothills Reforestation Interactive Planning System

AUTHOR <u>FGrOW</u> PUBLISHED Oct 01, 2021 SUBJECT AREA EXTERN MARAGEM

Forest Management Resource Management

RECORD TYPE GIS Products Tools and Apps

Related Programs

► Foothills Pine Project Team

Related Projects

▶ Regenerated Lodgepole Pine Project

Linking silviculture to growth and yield

FRIPSY (Foothills Reforestation Interactive Planning System) is a quantitative planning tool to assist management of Alberta's lodgepole pine forests. It is designed to:

- · Encourage and facilitate application of research undertaken by the FGrOW Foothills Pine Project;
- Assist silviculturists in selecting what combination of treatments (mechanical site preparation, planting, herbicide application, and pre-commercial thinning) best meet objectives for reforestation following harvesting:
- Support timber supply planning by linking regeneration performance to predictions of long-term growth and yield.

The application is run in Microsoft Excel, using either of two interactive processing modes: single-stand or hatch. It comes with a comprehensive user guide, including easy-to-follow instructions, plus more detailed background information on design and structure of the system.

Download the program file and user guide here

FRIPSY

https://fgrow.ca/publications/foothillsreforestation-interactive-planning-system

- Decision support tool
- Microsoft Excel app
- Interactive user interface
- Single-stand and batch processing modes
- Training videos and downloads

Regeneration	Forecast	(PL ingress in	cluded)					
Event	Years	Species	Age	Top ht	% *	Trees *	DBH	Basal area
	since cut		(years)	(m)	stocked	per ha	(cm)	(m²/ha)
Thin	13	AW	10.0	3.29	10.3	182		
(before)		PL	13.0	5.94	93.9	4476		
Thin	13	AW	3.1	1.42	0.4	9		
(after)		PL	13.0	5.94	93.9	3208		
Performance	14	AW	4.0	1.58	0.7	15		
		PL	14.0	6.40	93.8	3192		
Handover 18	18	AW	7.3	2.39	4.6	104	0.55	0.00
		PL	18.0	8.25	93.8	2500	9.47	17.60
		SB						
		SW						
Yield Projecti	on to age of P	L MAI culmin	ation at	67	years afte	er cut		ВАСК
Species	Site index	MAI	Volume	Age	Top ht	Trees	DBH	Basal area
	(m @ 50 yrs)	(m ^³ /ha/yr)	(m ^³ /ha)	(years)	(m)	(per ha)	(cm)	(m²/ha)
AW	16.3	0.10	6.5	56.3	16.8	102	14.9	1.8
PL	22.6	5.45	364.9	67.0	24.9	1037	21.5	37.6
SB								
SW								
Con		5.45	364.9			1037	21.5	37.6

FRIPSY

Example of regeneration forecast and yield projection

Pre-commercial thinning

* Based on minimum tree height 0.3m for conifers at thinning and performance, and 1.3m for AW (always) and conifers at handover.

Regeneration	n Forecast	(PL ingress in	cluded)					
Event	Years	Species	Age	Top ht	% *	Trees *	DBH	Basal area
	since cut		(years)	(m)	stocked	per ha	(cm)	(m²/ha)
Thin		AW						
(before)		PL						
Thin		AW						
(after)		PL						
Performance	14	AW	10.9	3.69	10.3	171		
		PL	14.0	6.40	93.7	4444		
Handover	18	AW	14.7	5.88	10.3	136	2.73	0.08
		PL	18.0	8.25	91.8	2983	8.31	16.20
		SB	15.1	2.80	4.8	48	Dens. too l	ow to project!
		SW	12.1	2.27	9.0	106		
Yield Projecti	i on to age of P	L MAI culmin	ation at	70	years afte	r cut		ВАСК
Species	Site index	MAI	Volume	Age	Top ht	Trees	DBH	Basal area
	(m @ 50 yrs)	(m ³ /ha/yr)	(m³/ha)	(years)	(m)	(per ha)	(cm)	(m²/ha)
AW	16.3	0.25	17.2	66.7	18.5	128	17.9	3.2
PL	22.6	5.04	352.6	70.0	25.4	1018	21.2	35.8
SB	14.4	0.00	0.0			0		0.0
SW	15.9	0.25	17.3	64.1	17.1	106	20.6	3.5
Con		5.28	369.8			1124	21.1	39.3

* Based on minimum tree height 0.3m for conifers at thinning and performance, and 1.3m for AW (always) and conifers at handover.

FRIPSY

Example of regeneration forecast and yield projection

No pre-commercial thinning

The way forward Innovation to create better and more widely applied solutions

Scope Species

Scope Ecoregions

Size Class within Species Group

High Intermediate

Low

High : 3.0

Low : -3.6

Scope Climate

- Frequency distributions (e.g. Dempster and Gulyas 2017)
- Combined probability models (e.g. Li et al. 2011)
- Segmented regression (e.g. Vanderschaaf and Burkhart 2008)
- Advanced machine learning e.g.
 Random Forest (Venier *et al.* 2019)
 XGBoost, LightGBM (Yang and Meng 2022)

Remote sensing

Image of RLP trial installation

- Area: 1 ha (100 m x 100 m)
- Planting: 4444 stems ha⁻¹ (1.5 m x 1.5 m), June 2002
- Flight date: October 2021
- LiDAR density: 470 ppm
- LiDAR flight height: 80 m
- Minimum tree height: 1.3 m
- Ortho flight height: 120 m
- Copyright © 2021 GreenLink Forestry Inc.

Remote sensing

Image of RLP trial installation

- Area: 1 ha (100 m x 100 m)
- Planting: 4444 stems ha⁻¹ (1.5 m x 1.5 m), June 2002
- Flight date: October 2021
- LiDAR density: 470 ppm
- LiDAR flight height: 80 m
- Minimum tree height: 1.3 m
- Ortho flight height: 120 m
- Copyright © 2021 GreenLink Forestry Inc.

- 1. Justification There is a compelling need to improve representation of regeneration dynamics in forest growth and yield models for Canada's boreal forest region, where new algorithms are required to properly represent post-disturbance forest stand dynamics.
- 2. Scope The currently limited scope of regeneration modelling should be expanded to embrace climate variables, and more species, natural sub-regions, and types of disturbance.
- **3. Implementation** Advances and innovations in climate data, analytical techniques, and remote sensing are available to facilitate input data capture, model development, and validation.

development, and validation.

Conclusions

Acknowledgements

- ANC Timber
- Blue Ridge Lumber
- Canadian Forest Products (Grande Prairie)
- Millar Western Forest Products
- Spray Lake Sawmills
- Sundre Forest Products
- West Fraser Mills (Edson and Hinton Woodlands)
- Weyerhaeuser (Grande Prairie and Pembina Timberlands)
- Alberta Forestry Parks and Tourism
- Canadian Forest Service
- Foothills Research Institute
- Forest Resource Improvement Association of Alberta
- University of Alberta

