

Climatic sensitivities derived from tree rings improve predictions of the Forest Vegetation Simulator growth and yield model

Courtney L. Giebink^{a,*}, R. Justin DeRose^b, Mark Castle^c, John D. Shaw^d, Margaret E.K. Evans^a

6.20.23 Growth and Yield Innovations Conference

Laboratory of Tree-Ring Research

andetes

Year

(Friedlingstein et al 2014)

Forest Simulation Models

Stand- level growth and yield model

FVS large-tree diameter growth model

Growth = f (Tree-level, Site-level biophysical, Competition)

Tree-level

- **DBH** = tree size
- CR = crown ratio is a measure of tree vigor

Site-level biophysical

- *SI* = Site index
- **SL** = Slope
- sin(ASP-.8)*SL = Solar radiation by eastness
- cos(ASP-.8)*SL = Solar radiation by northness

Competition

- BAL = basal area of trees larger than subject tree
- PCCF = subplot crown competition factor
- CCF = stand crown competition factor
- **SDI**= stand density index

Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics

Nicholas L. Crookston^{a,*}, Gerald E. Rehfeldt^a, Gary E. Dixon^b, Aaron R. Weiskittel^c

Forest Ecology and Management 260 (2010) 1198-1211

(Crookston et al. 2010)

Dendrochronology

Cook's Linear Aggregate Model (1985)

G = C + A + D1 + D2 + E

- G Growth
- C Climate signal
- A Age related trend
- D1 Disturbance within forest community
- D2 Disturbance outside forest community
- E variability

(Cook and Kairiukstis 1990)

Cook's Linear Aggregate Model (1985)

$\mathbf{G} = \mathbf{C} + \mathbf{A} + \mathbf{D1} + \mathbf{D2} + \mathbf{E}$

- G Growth
- C Climate signal
- A Age related trend
- D1 Disturbance within forest community
- D2 Disturbance outside forest community
- E variability

Building the Forest Inventory and Analysis Tree-Ring Data Set

Robert J. DeRose, John D. Shaw, and James N. Long

- Tree-ring data
- Inventory plots

DeRose, Shaw and Long 2017

Journal of Forestry 2017 155(4): 283-291

Workflow

What are the important drivers of tree growth?	Does the use of tree-ring data improve model performance?	How do predictions of growth with improved models differ from the base FVS model?

Annualize $(10 \rightarrow 1)$

Calibration

1) Annualize tree size (DBH)

2) Calculate/obtain predictors

DBH	Competition (CCF, PCCF, BAL, SDI)	Tree-level (CR)	Site-level biophysical (SI,SL,ASP)
DBH _t	Competition _t	CR	
DBH _{t-}	Competition _{t-n}	CR	

Interannual Climate Effects

- Seasonal (1, 3, 6 month) climategrowth correlations
 - Temperature
 - DF: February July
 - PP: June August
 - ES: Previous August
 - o Precipitation
 - Previous June September (16 month)

Annualize (10→1) ↓ Add interannual climate effects

- Full Annual
- ▲ Full Climate

Annualize (10→1) ↓ Add interannual climate effects ↓ Reduce by removing terms

- Full Annual
- Full Climate

Annualize (10→1) ↓ Add interannual climate effects ↓ Reduce by removing terms

- Full Annual
- Reduced Annual
- ▲ Full Climate
- △ Reduced Climate

Annualize $(10 \rightarrow 1)$ Add interannual climate effects Reduce by removing terms Add complexity: spatial heterogeneity in climate sensitivity with climate normals (average) and interactions

- Full Annual
- Reduced Annual
- Full Climate
- △ Reduced Climate

Population-level response 1) Spatial heterogeneity in climate sensitivity

- Temporal: interannual climate
- Spatial: average climate (climate normals)

(Klesse et al. 2020)

Spatial heterogeneity in climate sensitivity

★ More sensitive at warm and dry locations

Interactions - climate:competition

Calibration: refined understanding of drivers

- Important drivers of tree growth
 - Tree-level variables (size and crown ratio) had the largest effect
 - Climate and competition are small but well constrained
- Climate sensitivity is greater at warm and dry locations
- Competition increases climate sensitivities

Workflow

Validation metrics

- Observed vs Predicted Diameter Growth (in)
 - Slope ≈ 1
 - \circ High Adjusted R²
 - Low RMSE

Predicted Diameter Growth (in)

Validation: improved prediction

- Including all predictors in a growth model parameterized with tree rings reduces model performance
- Growth is over predicted by FVS in ponderosa pine and Engelmann spruce
 - Addition of climate effects improves growth prediction

Workflow

Validatio

N Identified high performing models

- 1. Reduced annual
- 2. Reduced with climate
- 3. Reduced with climate plus climate normals
- 4. Reduced with climate plus climate normals and

interactions

Projection

Model

Engelmann spruce

More accurate predictions of the carbon uptake potential of forests under climate change

Conclusions

- Calibration: what are the important drivers of tree growth estimated from tree-ring and forest inventory data?
 - Climate and competition
- Validation: does the use of tree-ring data improve model performance?
 - Yes! But improvements are species-specific.
- Projection: how do predictions of growth with improved models differ from the base FVS model?
 - Climate is expected to cause a decline in growth in ponderosa pine and Engelmann spruce, but accounting for local adaptation in Engelmann spruce moderates reductions in growth.

Adding Tree Rings to North America's National Forest Inventories: An Essential Tool to Guide Drawdown of Atmospheric CO₂

MARGARET E. K. EVANS®, R. JUSTIN DEROSE®, STEFAN KLESSE®, MARTIN P. GIRARDIN®, KELLY A. HEILMAN®, M. ROSS ALEXANDER®, ANDRE ARSENAULT®, FLURIN BABST®, MATHIEU BOUCHARD®, SEAN M. P. CAHOON®, ELIZABETH M. CAMPBELL®, MICHAEL DIETZE®, LOUIS DUCHESNE®, DAVID C. FRANK®, COURTNEY L. GIEBINK®, ARMANDO GÓMEZ-GUERRER®®, GENARO GUTIÉRREZ GARCÍA®, EDWARD H. HOGG®, JUHA METSARANTA®, CLÉMENTINE OLS®, SHELLY A. RAYBACK®, ANYA REID®, MARTIN RICKER®, PAUL G. SCHABERG®, JOHN D. SHAW®, PATRICK F. SULLIVAN®, AND SERGIO ARMANDO VILLELA GAYTÁN®

Thank You!

Courtney.Giebink@usda.gov

O

Calibration

2) Calculate/obtain predictors

DBH	Competition (CCF, PCCF, BAL, SDI)	Tree-level (CR)	Site-level biophysical (SI,SL,ASP)
DBH _t	Competition _t	CR	
DBH _{t-}	Competition _{t-n}	CR	
n			

Douglas-fir

Ponderosa pine

Engelmann spruce

