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Forest Simulation Models
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Stand- level
growth and
yield model

Figure 1 - Geographic Variants of the
Forest Vegetation Simulator.
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Tree-level

DBH = tree size

CR =crown ratiois a
measure of tree vigor

Site-level biophysical

SI = Site index

SL = Slope
sin(ASP-.8)*SL = Solar
radiation by eastness
cos(ASP-.8)*SL = Solar
radiation by northness

Competition

BAL = basal area of
trees larger than
subject tree

PCCF = subplot crown
competition factor
CCF = stand crown
competition factor
SDI= stand density
index



Addressing climate change in the forest vegetation simulator to assess
impacts on landscape forest dynamics

Nicholas L. Crookston®*, Gerald E. Rehfeldt?, Gary E. DixonP®, Aaron R. Weiskittel

Forest Ecology and Management 260 (2010) 1198-1211



Climate
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Dendrochronology

Cook’s Linear
Aggregate Model (1985)

G=C|¢-A+Dl+D2+E

G - Growth

C - Climate signal

A - Age related trend

D1 - Disturbance within forest community
D2 - Disturbance outside forest community
E - variability

Relative Growth
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Cook’s Linear
Aggregate Model (1985)

G=C+A+D1+D2+E

G - Growth

C - Climate signal

A - Age related trend

D1 - Disturbance within forest community
D2 - Disturbance outside forest community
E - variability




Sis 2017 155(4): 283-291
Tree-Ring Data Set g

Robert J. DeRose, John D. Shaw, and James N. Long

Building the Forest Inventory and Analysis 7o
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Workflow

What are the important drivers of tree
growth?

Does the use of tree-ring data improve
model performance?

How do predictions of growth with improved
models differ from the base FVS model?




Growth =f (Tree-level, Site-level biophysical, Competition)

Annualize (10->1)

}

Add interannual climate effects

}

Reduce by removing terms

}

Add complexity



Growth =f (Tree-level, Site-level biophysical, Competition)

Annualize (10->1)



Calibration
1) Annualize tree size (DBH)  2) Calculate/obtain predictors

Measure Year

DBH | Competition | Tree-level | Site-level
(CCF, PCCF, | (CR) biophysical
BAL, SDI) (SI,SL,ASP)
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Growth =f (Tree-level, Site-level biophysical, Competition)

}

Annualize (102>1) —— Models
e Full Annual




Growth =f (Tree-level, Site-level biophysical, Competition)

}

Annualize (102>1) —— Models
l e Full Annual

Add interannual climate effects



Interannual Climate Effects
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Growth =f (Tree-level, Site-level biophysical, Competition)

}

Annualize (10->1) Models
l e Full Annual

Add interannual climate effects

A  Full Climate




Growth =f (Tree-level, Site-level biophysical, Competition)

}

Annualize (10->1) Models
l e Full Annual

Add interannual climate effects
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Reduce by removing terms




Growth =f (Tree-level, Site-level biophysical, Competition)

}

Annualize (10->1)

}

Add interannual climate effects

}

Reduce by removing terms

Models

Full Annual
Reduced Annual
Full Climate

Reduced Climate




Reduced Climate Models

Growth = f (tree-level, site-level biophysical, competition,climate)
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growm

Growth = f (tree-level, site-level biophysical, competition, climate)

Effect Plot
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Reduced Climate Models

Growth = f (tree-level, site-level biophysical, competition, climate)
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Reduced Climate Models

Growth =f (tree-level, site-level biophysical, competition, climate)
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Reduced Climate Models

Growth =f (tree-level, site-level biophysical, competition,climate)
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Growth =f (Tree-level, Site-level biophysical, Competition)

}

Annualize (10->1)

}

Add interannual climate effects

}

Reduce by removing terms

Add complexity:
spatial heterogeneity in climate
sensitivity with climate normals

(average) and interactions

Models

Full Annual
Reduced Annual
Full Climate

Reduced Climate




Population-level response
1) Spatial heterogeneity in climate sensitivity

A

- = = - Temporal response

Spatial response

e Temporal: interannual
climate

e Spatial: average climate
(climate normals)

Mean ring width

Mean annual temperature

(Klesse et al. 2020)



Annual growth (inches?)

Spatial heterogeneity in climate sensitivity
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Interactions - climate:competition
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Calibration: refined understanding of drivers

e Important drivers of tree growth
o Tree-level variables (size and crown ratio) had the largest
effect
o Climate and competition are small but well constrained
e Climate sensitivity is greater at warm and dry locations
e Competition increases climate sensitivities



Workflow

What are the important drivers of tree

Does the use of tree-ring data improve

How do predictions of growth with improved

growth? model performance? models differ from the base FVS model?
g U 4

Calibration: parameterize growth models

FVS diameter growth model

|
Annualize (10-+1)

l

Add interannual climate
|

.

Reduce terms
|

Add complexity

Validation: identify high performing models

+ High Performance

Projection: predict future growth
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Calibration out-of-sample  Valldatio

Measure Year

Engelmann spruce

N (n = 1144)
Douglas-fir

(n =891)

Ponderosa pine

§‘ (n = 384)
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Validation metrics

e Observed vs Predicted
Diameter Growth (in)
o Slope =1
o High Adjusted R?
o Low RMSE

Observed Diameter Growth (in)

6+

-
i

Species
®  Douglas-fir
Engeimann spruce
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Over
predicted
growth

Predicted Diameter Growth (in)
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Validation: improved prediction

e Including all predictors in a growth model parameterized with tree
rings reduces model performance
e Growth is over predicted by FVS in ponderosa pine and

Engelmann spruce
o Addition of climate effects improves growth prediction



Workflow

What are the important drivers of tree

Does the use of tree-ring data improve

How do predictions of growth with improved

growth? model performance? models differ from the base FVS model?
g U U

Calibration: parameterize growth models

FVS diameter growth model
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Validatio

n Identified high performing
models

1. Reduced annual

2. Reduced with climate

3. Reduced with climate plus
climate normals

4. Reduced with climate plus
climate normals and

Projection

Engelmann spruce
(n =1340)
Douglas-fir

(n =995)
Ponderosa pine

;‘35&‘ (n = 460)

RGR =
DBH2060 - DBHinitial

DBHinitial

< Interactions

RGR =
DBH2060 - DBHinitial

DBHinitial
J |



Projection
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Conclusions

e Calibration: what are the important drivers of tree growth estimated
from tree-ring and forest inventory data?
o Climate and competition
e Validation: does the use of tree-ring data improve model
performance?
o Yes! But improvements are species-specific.
e Projection: how do predictions of growth with improved models differ
from the base FVS model?
o Climate is expected to cause a decline in growth in ponderosa pine and

Engelmann spruce, but accounting for local adaptation in Engelmann spruce
moderates reductions in growth.



O Reproducible Workflow

Figure 1 - Geographic Variants of the
Forest Vegetation Simulator.
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Thank You!
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Calibration

( Nonfocal trees }
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2) Calculate/obtain predictors
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Ponderosa pine
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