Alternative subsampling designs derived from aerial and terrestrial remote sensing technology

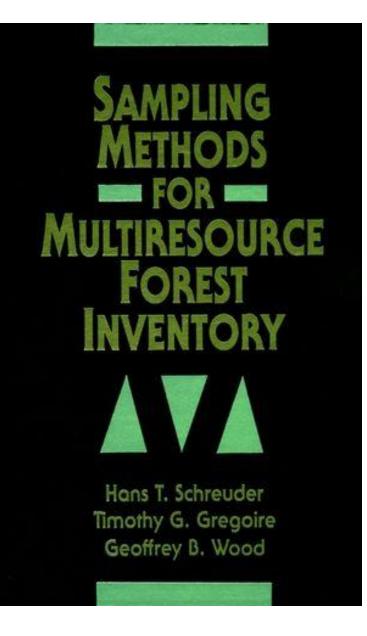
Dr. John Kershaw

Faculty of Forestry and Environmental Management

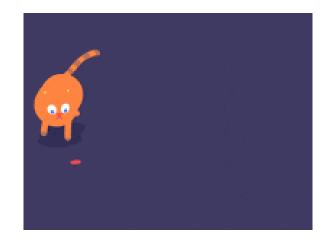
University of New Brunswick

The curmudgeons in the balcony

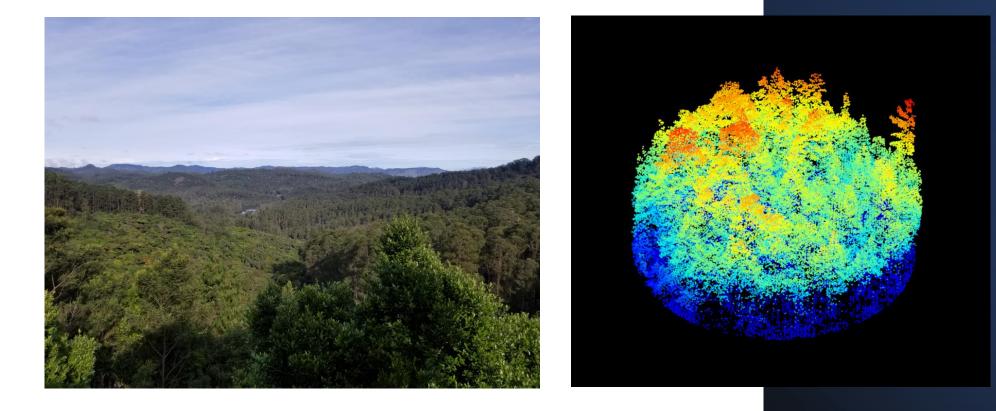
In the beginning....



Then came remote sensing to the garden...



...and we forget Forests are biological systems not point clouds



(so called) Enhanced forest inventory

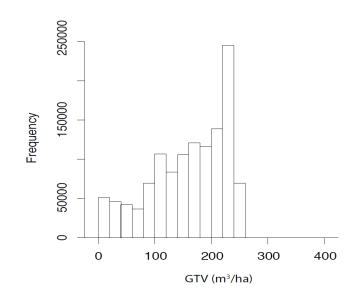


Figure 3.5 Histogram of enhance forest inventory gross total volume (GTV) distribution across study

area (by 20m EFI cells).

From: Chen 2019, Hierarchical Variable Probability Sampling For Carbon Estimation. MSc Thesis, UNB

Figure 1.1. Three ground plot photos corresponding to the same LiDAR-derived estimate of volume per hectare

From: Yang 2021 A Systems Approach for Estimating Forest Attributes from LiDAR. PhD Dissertation, UNB

(so called) Enhanced forest inventory

(so called) Enhanced forest inventory

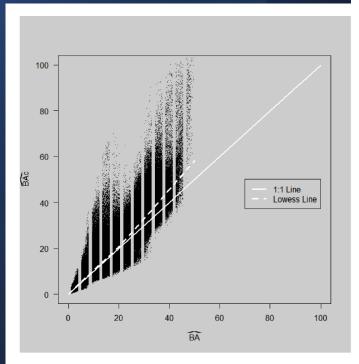


Figure 4.2. Comparisons between LiDAR EFI BA prediction (\widehat{BA}) and BA calculation (\widehat{BA}_C) substituted by LiDAR EFI QMD and N (Eq. 4-3).

From: Yang 2021 A Systems Approach for Estimating Forest Attributes from LiDAR. PhD Dissertation, UNB

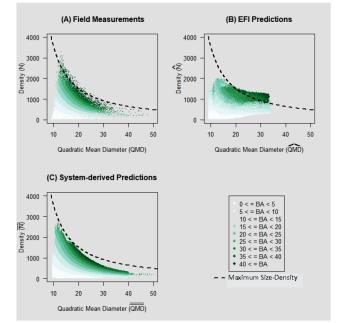


Figure 4.4. Comparisons of Reineke Stand Density Index Space made by three data sources: (A) Field measurements (QMD, N, BA); (B) EFI predictions $(\overline{QMD}, \widehat{N}, \overline{BA})$; and (C) system-derived estimates $(\overline{QMD}, \overline{N}, \overline{BA})$. The maximum stand density is made by quantile regression with tau=0.99.

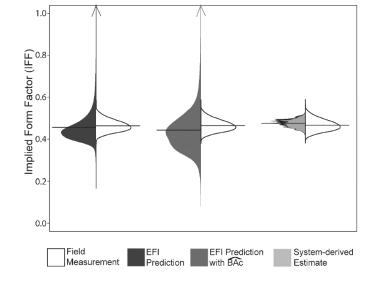


Figure 4.5. The distribution and average of implied form factor (IFF, eq. 4-4; unitless) calculated from field measurements, EFI predictions ($\overline{VOL}, \widehat{HT}_L, \widehat{BA}$), EFI calculations, \widehat{BA}_C ($\overline{VOL}, \widehat{HT}_L, \overline{QMD}, \widehat{N}$), and system-derived estimates ($\overline{VOL}, \widehat{HT}_L, \overline{BA}$).

Highlight some recent work from my lab

- Sampling to correct LiDAR EFI
- Sampling with covariates derived from remote sensing
- Sector subsampling using a spherical camera

Some energetic and creative collaborators

Sampling to correct

- LiDAR-derived EFI and other mapped forest attribute estimates are becoming readily available
- Those estimates have errors and biases, especially when applied at smaller spatial scales
- Can we use those estimates as covariates to design efficient sampling to correct procedures?

Sampling to correct



Figure 2.4 Cost-based design effect comparisons by five sample selection methods and four plot

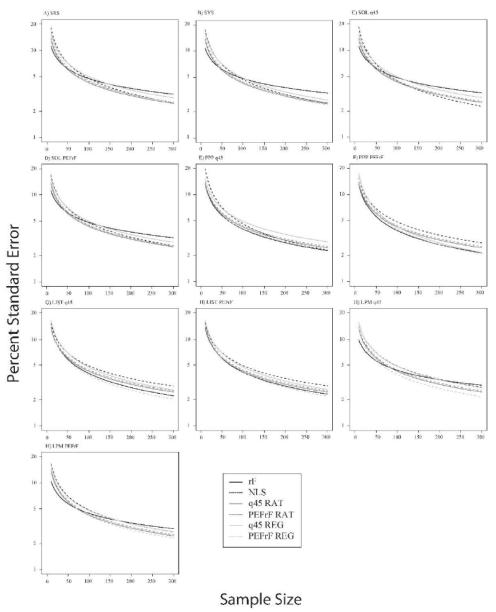
types. Sample size calculations were based on a desired standard error of 5%. Upward pointing

From: Hsu 2019 Applications Of Variable Probability Sampling Using Remotely Sensed Covariates, UNB

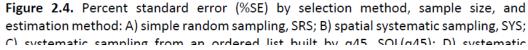
Sampling with covariates derived from remote sensing

- Rather than using LiDAR EFI predictions, can we use LiDAR attributes directly to develop efficient sample designs?
- Do we need LiDAR to do this? Can we use cheaper, more accessible technology?

Sampling with covariates derived from remote sensing



From: Yang 2021 A Systems Approach for Estimating Forest Attributes from LiDAR. PhD Dissertation, UNB



Sampling with covariates derived from remote sensing

From: Hsu 2019 Applications Of Variable Probability Sampling Using Remotely Sensed Covariates, UNB

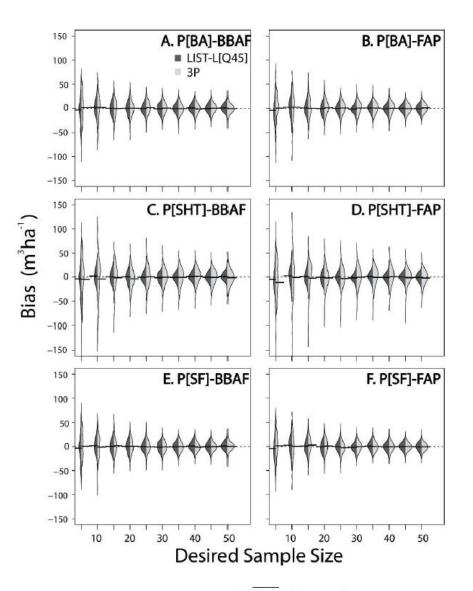


Figure 3.2 The mean and distribution of bias of VOL_{jk}by sampling covariate, plot type, and sample size. (FAP = fixed area plot, BBAF = big BAF sample plot, L[Q45] = height

Sector subsampling using a spherical camera

- What more can we derive from these spherical images?
- How can we best utilize measurements directly from the spherical images?

Sector subsampling using a spherical camera

Big BAF sampling

Chen et al. (2019) showed that big BAF sampling was an efficient sampling method for estimating biomass

□ A subsampling variant of HPS

- A small angle gauge is used to project a horizontal angle
 - Identify count trees

PBA=# of in trees x BAF

- A larger BAF angle gauge is used to select measure trees to measure attributes
- Biomass to basal area ratio (BBAR)

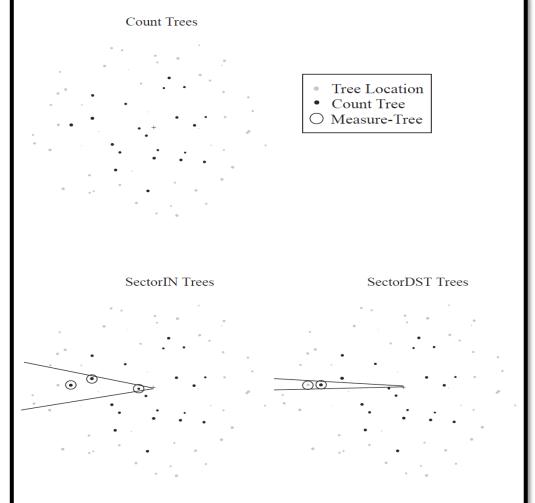
However, big BAF sampling requires trees to be closer to the plot center

Close "In" trees (Big BAF)

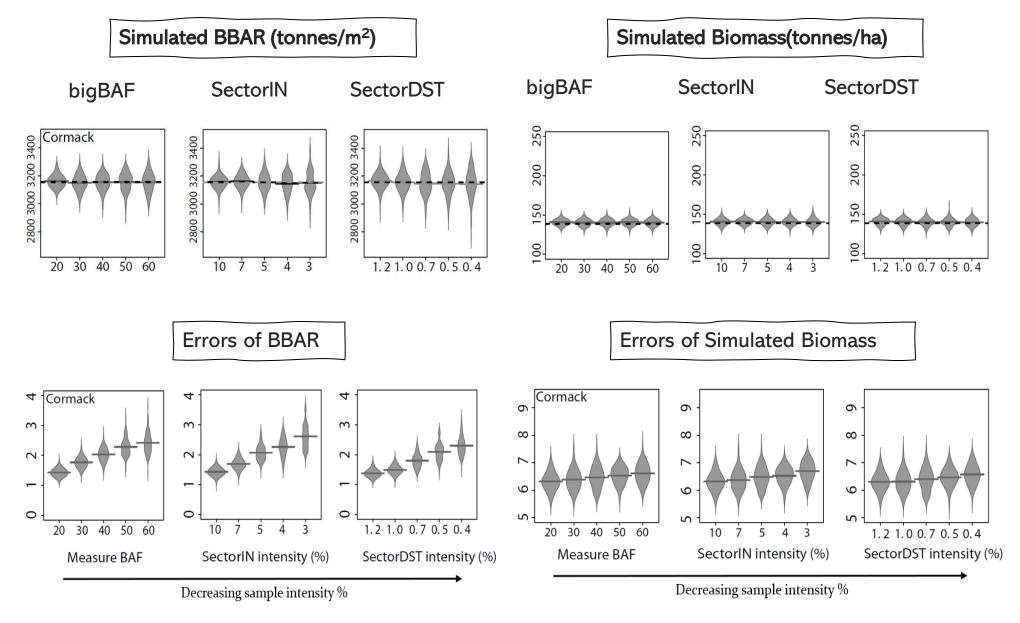
Are there alternative subsample selection methods?

Count tree selection and sector subsample selection methods

Sector subsampling Sector) A given percent of a circle



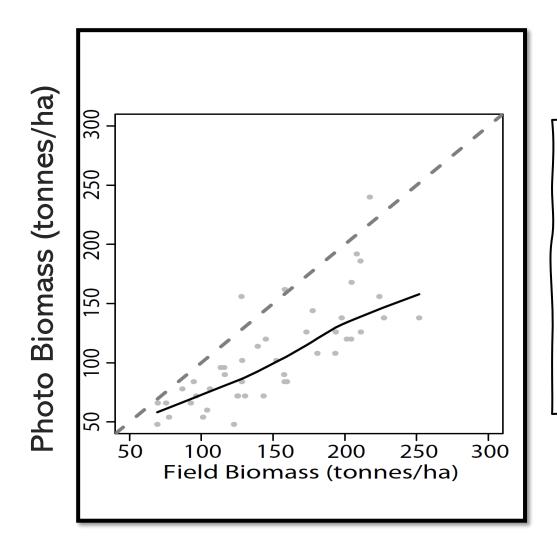
Simulated Sector Sample Results



Close "In" trees (Big BAF)

A random sector is extracted from each photo (A sector will be converted to 2 vertical lines)

Bias Due to Occluded Trees

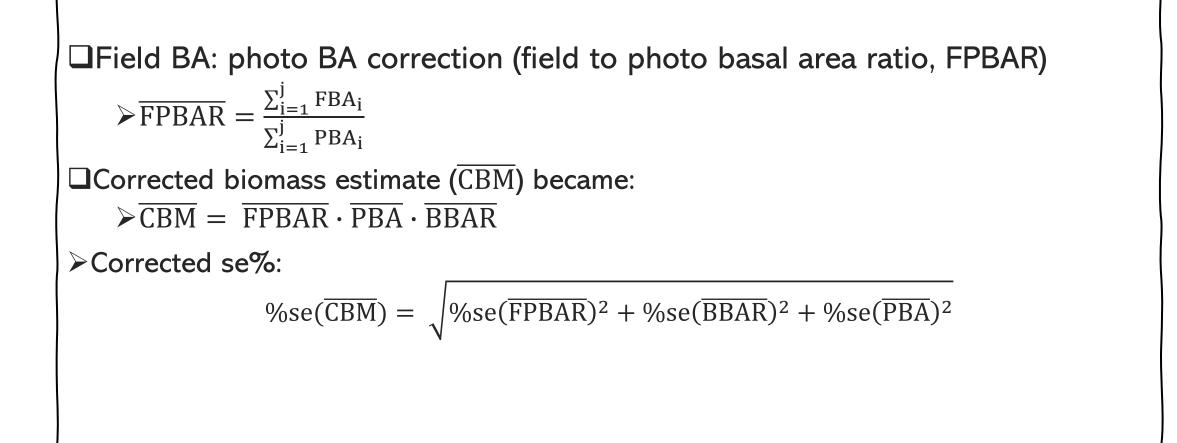


The occluded trees can never be avoided, there is always a big under-estimation.

Selection of measure-trees did not produce biases

The underestimation of basal area from the spherical images (PBA) resulted in serious underestimation of biomass

Occluded Tree Correction



Results

Comparison between corrected/uncorrected sector prediction with field measured biomass under 4 different sample sizes 5, 10, 15, 20



	Source	Biomass Estimate				
 Trivial Masters research or 	Sample Size	Mean	Standard Error	# trees measured (field)	# trees measured (Photo)	Cost
something	Field Measured	148.9	7.3	4000	0	Around \$10, 000 (\$2.46 per tree, 4,100+ trees)
important	TLS Prediction	148.8	17.2	4000	0	\$11,855 + field\$
here?	PBA Prediction	149.3	19.9	4000	0	\$1,700 + field\$
	Sector Subsampling					
	Uncorrected	102.9	5.4	0	53	\$800
	5	148.5	30.1	0	53	\$855
		{95.5, 241.7}				
	10	146.4	19.7	0	53	\$911
	{	105.8, 191.4}				
	15	144	13.2	0	53	\$966
	{	108.8, 171.2}				
	20	143.9	10.3	0	53	\$1018
	{	121.9, 163.5}				

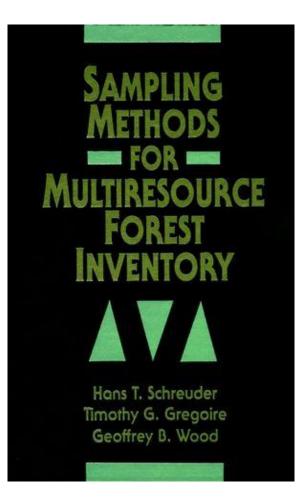
Hierarchical variable probability sampling

Integrate information across various spatial scales and sources into an efficient sampling design to produce compatible biological estimates

...returning to some first principles

- Forests have biological and mathematical interrelationships
 - Sample and model estimates need to reflect that
- Our sample gives us the total (Kim Iles)
 - LiDAR and other remote sensing tools just help us spread that total across the landscape
- The most efficient sample is the one that selects proportional to the parameter of interest (Basu/"Beer's Law")

In the beginning....



Then came remote sensing.

Some energetic and creative collaborators