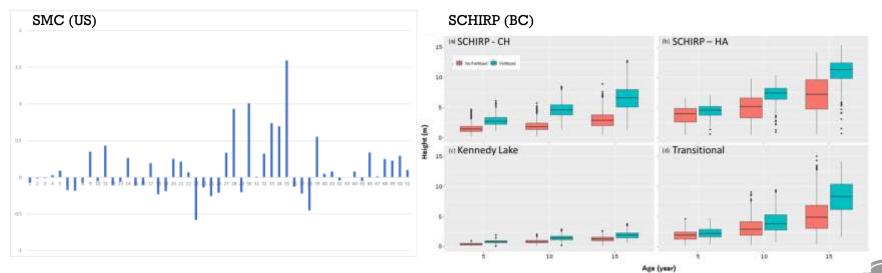
MODELLING TREE-LEVEL WESTERN HEMLOCK RESPONSES TO FERTILIZATION

Woongsoon Jang^{a,b}, Bianca N.I. Eskelson^b, Kim M. Littke^c, Eric Turnblom^c

^a British Columbia Ministry of Forests
^b University of British Columbia
^c University of Washington

Growth and Yield Innovations Conference 2023

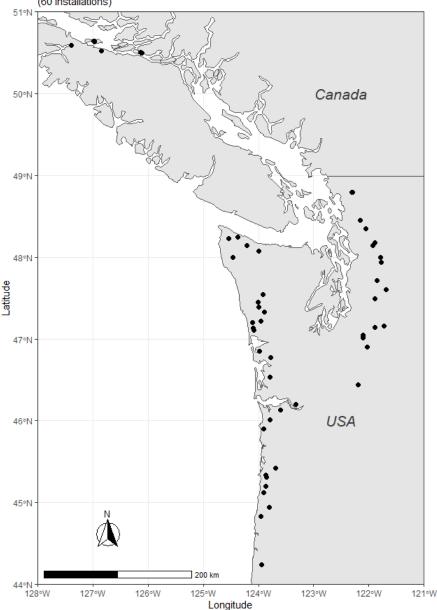
WESTERN HEMLOCK (*TSUGA HETEROPHYLLA* (RAF.) SARG.)


- Most common and important timber species in the PNW coastal forests
 - Account for up to 30% of total harvested log volume
 - In BC, ~0.7 mil ha pure Hw stands
- Providing ecosystem values
 - Esthetics, wildlife habitat and food, genetic diversity, carbon sequestration, and long-term productivity

VARIATIONS OF FERTILIZATION RESPONSES

- Forest fertilization
 - Increase productivity, sequestrate carbon, enhance vitality of soil and stands, promote stand development, and increase diversity of wildlife habitat conditions
- Variable fertilization responses
 - Inconsistent outcomes, ranging from negative to positive
 - TIPSY: default response is $\mathbf{0}\%$ for all sites and ages

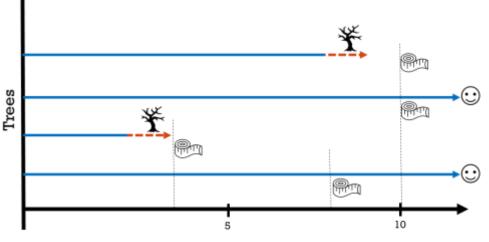
2023. 6.19. Growth and Yield Innovations Conference 2023


OBJECTIVE

- Develop the tree-level fertilization response models of western hemlock
 - Quantify mortality, dbh, and height growth responses
 - Examine if social standing, crown characteristics affect these responses
 - Predict tree-level fertilization response

Study site

2023. 6.19. Growth and Yield Innovations Conference 2023


DATA & MODELS

- Data sources
 - EP703: 9 installations
 - SMC: 51 installations
 - Estab. 1969-1980 (19-56 yrs old)
 - 224-975 kg N ha⁻¹ of urea
 - Remeasured every 2-3 years
- Data compilation
 - Single-time application
 - DBH
 - <12 year-since-fertilization (ysf)</pre>
 - 124,982 obs. / 31,736 trees
 - HT
 - <12 ysf
 - 13,950 obs. / 4,460 trees
 - Mortality
 - Latest but not exceeding 10 ysf
 - 51,626 obs. & trees

VARIABLES USED FOR MODEL CONSTRUCTION

Notation	Variable	Unit	Range	Mean
MAI	Mean annual increment of DBH	cm year-1	0.08–2.51	0.43
DBH	Diameter at breast height	cm	2.29-75.95	17.00
нт	Total height	m	3.05–48.5	16.18
CR	Crown ratio	-	0.17-1.00	0.57
SBA	Stand basal area	m² ha-1	2.66–111.40	50.54
BAL	Sum of basal area of larger trees	m² ha-1	0.13–111.28	28.33
rBAL	Relative BAL	-	0.00-1.00	0.58
SI	Site index	m	19.51–59.13	39.57
N	Nitrogen application rate	N tons ha ⁻¹	0.00–0.98	0.22
Р	Phosphorus application	-		
SDI	Stand density index	-	65.1–1063.9	539.0

MODEL CONSTRUCTION - MORTALITY

Years since Fertilization

- Variations in measurement intervals and differing times of mortality observation
 - Shaffer's (2004) "logistic-exposure link function"
- 2-level nested random effects (installation, plot)
- Stand-level, tree-level variables were tested for explanatory variables

 $logit(P_{mort}) = (\beta_0 + b_i + b_{ip}) + \beta_1 \cdot MAI + \beta_2 \cdot N + \beta_3 \cdot rBAL + \beta_4 \cdot SBA + \beta_5 \cdot DBH + \beta_6 \cdot MAI \cdot N + \beta_7 \cdot rBAL \cdot N$

MODEL CONSTRUCTION - GROWTH RESPONSES

$$\Delta y = F_{base} \cdot F_{fert}$$

- Multiplicative form with baseline growth model (F_{base}) and fertilization effect (F_{fert})
 - Modified Hynynen et al. (1998) & Kuehne et al. (2022)
- F_{base} reference growth
 - 3-level nested random effects (installation, plot, trees)
 - Stand-level & tree-level variables including initial size were tested
- F_{fert} fertilization modifier
 - Stand-& tree-level variables, fertilization rate, P addition were included
 - Weibull pdf to model the size of fertilization effect by year

$$f_{ysf} = \frac{\kappa}{\lambda} \cdot \left(\frac{ysf}{\lambda}\right)^{\kappa-1} \cdot e^{-(ysf/\lambda)^{\kappa}}$$

GROWTH RESPONSE MODELS - DBH

$$\Delta dbh = F_{base} \cdot F_{fert}$$

 $F_{base} = \exp\left(\begin{pmatrix} \left(\beta_0 + b_i + b_{ip} + b_{ipt}\right) + \beta_1 \cdot DBH + \beta_2 \cdot \log(DBH) + \\ \beta_3 \cdot CR + \beta_4 \cdot BAL^2 + \beta_5 \cdot \log(SBA) + \beta_6 \cdot \log(SI) \end{pmatrix} \right)$

$$F_{fert} = \left(1 + \begin{pmatrix} \alpha_1 + \alpha_2 \cdot P + \alpha_3 \cdot SDI + \alpha_4 \cdot rBAL + \\ \alpha_5 \cdot rBAL^2 + \alpha_6 \cdot CR \end{pmatrix} \cdot N \cdot f_{ysf}\right)$$

$$f_{ysf} = \frac{\kappa}{\lambda} \cdot \left(\frac{ysf}{\lambda}\right)^{\kappa-1} \cdot e^{-(ysf/\lambda)^{\kappa}}$$

2023. 6.19. Growth and Yield Innovations Conference 2023

GROWTH RESPONSE MODELS - HEIGHT

$$\Delta HT = F_{base} \cdot F_{fert} = PHG \cdot HMOD \cdot F_{fert}$$
$$\Rightarrow PHG = f(SI, GEA + 1) - Ht$$
$$GEA = f^{-1}(SI, Ht)$$

- F_{base} for height is a product of potential growth (PHG) and a height growth modifier (HMOD; Weiskittel et al. 2007)
- PHG: potential height growth of a site tree given site index and growth effective age (GEA)
- GEA: age of site trees with the same height as the subject tree in the given site (index)

$$HMOD = \exp\left(\begin{pmatrix} (\beta_0 + b_i + b_{ip} + b_{ipt}) + \beta_1 \cdot \log(Ht) + \beta_2 \cdot CR + \\ \beta_3 \cdot BAL^2 + \beta_4 \cdot \log(SI) \end{pmatrix}$$
$$F_{fert} = (1 + (\alpha_1 + \alpha_2 \cdot rBAL + \alpha_3 \cdot CR + \alpha_4 \cdot P) \cdot N \cdot f_{ysf})$$

RESULTS – MORTALITY

 $logit(P_{mort}) = (\beta_0 + b_i + b_{ip}) + \beta_1 \cdot MAI + \beta_2 \cdot N + \beta_3 \cdot rBAL + \beta_4 \cdot SBA + \beta_5 \cdot DBH + \beta_6 \cdot MAI \cdot N + \beta_7 \cdot rBAL \cdot N$

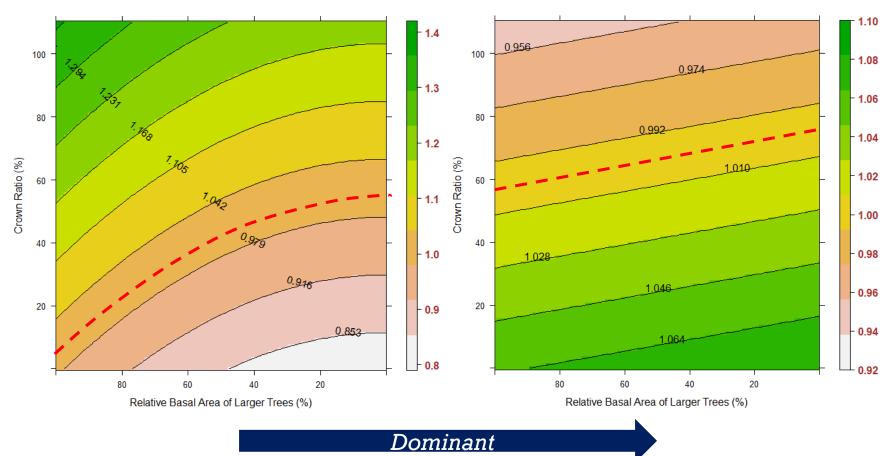
Parm	Estimate	SE	z-value	P-value	Note
β _o	0.7179	0.3448	2.082	0.03732	Int
β	-1.9339	0.3949	-4.897	< 0.0001	MAI
β_2	4.1232	0.7508	5.492	< 0.0001	Ν
β ₃	2.1726	0.1902	11.423	< 0.0001	rBAL
β_4	0.6978	0.2649	2.634	0.00844	SBA/100
β ₅	-6.1808	0.8372	-7.383	< 0.0001	DBH/100
β ₆	-4.0159	0.8282	-4.849	< 0.0001	MAI:N
β ₇	-2.6226	0.5452	-4.811	0.00197	N:rBAL

- Fertilization increase mortality probability
 - Facilitate self-thinning process
- But, the interactions indicate:
 - Hw with the higher avg. dbh growth rate has lower mortality
 - Fertilization ameliorates the mortality for relatively suppressed Hw
 - Fertilization can alleviate below-ground competition for nutrition

RESULTS – GROWTH RESPONSES

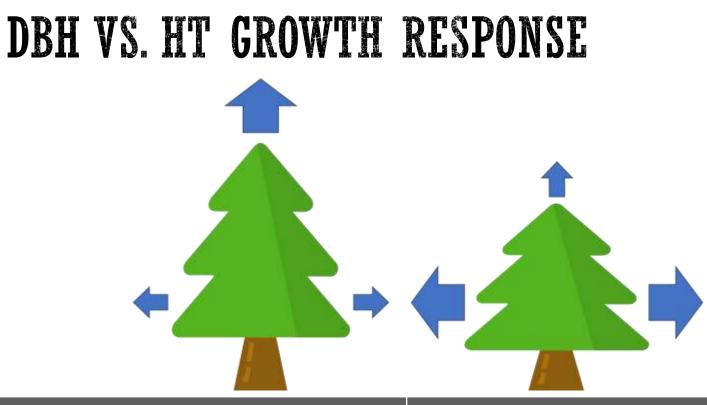
$$\Delta dbh, ht = F_{base} \cdot F_{fert} = F_{base} \cdot \left(1 + f(\alpha, x) \cdot f_{ysf}\right)$$

DBH model

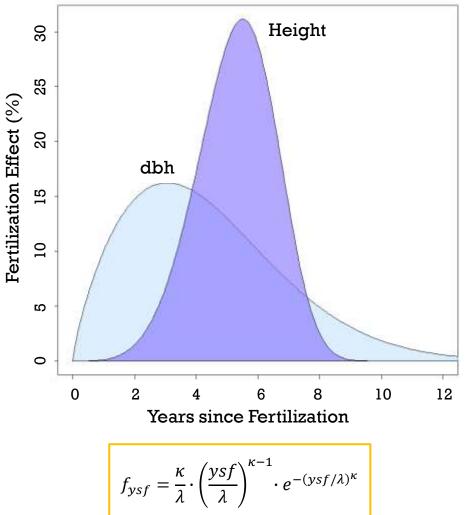

HT model

Parm	Estimate	P-value	Note
β _o	1.111522	0.2208	Int.
β_1	-0.017257	< 0.0001	DBH
β ₂	1.364692	< 0.0001	log(DBH)
β ₃	-1.150056	< 0.0001	CR
β_4	-0.000207	< 0.0001	BAL
β ₅	-0.731281	< 0.0001	log(SBA)
β _e	-0.568521	0.0180	loq(SI)
α_1	-9.866462	< 0.0001	Ν
α2	-0.930669	< 0.0001	P:N
α3	0.006888	< 0.0001	SDI:N
α_4	-0.007593	0.9848	rBAL:N
α ₅	5.683386	< 0.0001	rBAL ² :N
α ₆	11.187504	< 0.0001	CR:N
λ	4.908749	<0.0001	scale
К	1.765493	< 0.0001	shape

Parm	Estimate	P-value	Note
β ₀	3.454878	<0.0001	Int
β_1	0.233705	< 0.0001	log(Ht)
β ₂	0.216848	0.0335	CR
β ₃	-0.000112	< 0.0001	BAL ²
β_4	-1.249609	< 0.0001	log(SI)
α ₁	2.359009	< 0.0001	Ν
α2	-0.567380	0.0033	rBAL:N
α3	-3.077309	< 0.0001	CR: N
α_4	0.698335	0.0059	P:N
λ	5.783165	<0.0001	scale
К	4.781137	<0.0001	shape


DBH VS. HT GROWTH RESPONSE

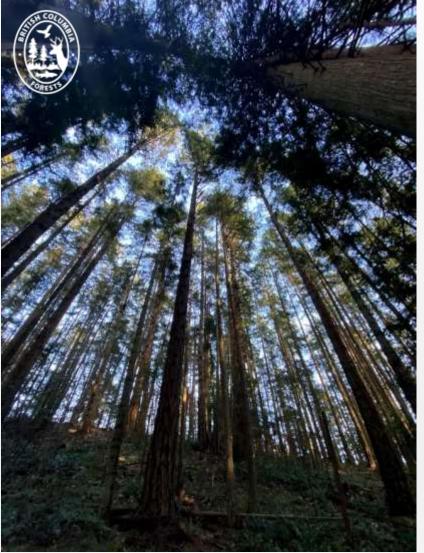
DBH Growth response at 4 years after Fertilization


Height Growth response at 4 years after Fertilization

2023. 6.19. Growth and Yield Innovations Conference 2023

Dominant trees	Suppressed trees
 Prioritize vertical growth Maintain competitive advantage	 Prioritize lateral growth Increase crown projected area
to capture sunlight Or, might be experiencing	and maximize light capture in
intense competition for full	the low light level (rel. with
sunlight	shade-tolerance)

RESULT – FERTILIZATION EFFECTS


2023. 6.19. Growth and Yield Innovations Conference 2023

- Fertilization effects peaked
 DBH: ~ 3 ysf
 - HT: $\sim 6 \text{ ysf}$
- Lateral growth can be favored over vertical growth during the resource re-allocation process (Kuehne et al. 2022)
- Crown responds immediately after fertilization, and stem growth follows in a way to maintain structural stability (Valinger 1993)

CONCLUSION

- More precisely quantify fertilization responses by individual's social standing and crown ratio (and other stand-level variables)
- Provide inspirations to the relationship among Hw's resource allocation strategy, physiological characteristics (e.g., shade tolerance), tree-level attributes including social standing
- Not easily applicable to identify the optimum sites for investment
 - But incorporated in TASS, enable to estimate stand-level mortality, growth response of Hw to fertilization
- Will implement to other species, including interior species (e.g., EP 886) & other treatments

THANK YOU!

Questions?

Woongsoon.Jang@gov.bc.ca

2023. 6.19. Growth and Yield Innovations Conference 2023