

OLD AND VERY OLD ASPEN

- FIELD PRESENTATION

Paul LeBlanc - District Forester

LP Canada Ltd. Swan River, MB

Wed. June 21st, 2023

paul.leblanc@lpcorp.com

PSP 588 - near Kananaskis, AB

OLD AND VERY OLD ASPEN – FIELD PRESENTATION

- Introduction old aspen in the boreal forest – Alberta Gov't PSP 588
- Manitoba and Saskatchewan old aspen - learnings and models
- Successional pathways and yield curves for old and very old aspen
- Conclusions forest management options and modeling options

Age 133 in 2023 - this is what the PSP we're standing in looks like

Ge	eneral Info	rmation		Sterr	ns/Ha	Other Compiled Variables										
Species	Meas #	Year	StandAge	1.3m+	9.1cm+	BA	VolMerch	TopHt	Site Index							
Aspen	1	1989	99	800	800	34	209	18.1	12.3							
Aspen	2	2001	111	630	630	34	205	16.6	12.3							
Aspen	3	2017	127	1236	430	30	200	18.4	12.3							
Poplar	1	1989	99	980	300	12	59	17.6	11.1							
Poplar	2	2001	111	1530	240	12	59	17.2	11.1							
Poplar	3	2017	127	3919	210	10	26	14.2	11.1							

- Southwest Montane 'e' ecosite:
- mesic moisture / nutrients slightly above average
- seepage may occur
- transitions to white spruce dominance, but is often delayed by competition

5 cm DBH classes over the 3 measurements (1989, 2001, and 2017)

Age 133 in 2023 - this is what the PSP we're standing in looks like

- reference site index for aspen = 11.6 m at 50 years (breast height age)
 - Density of regeneration/saplings is <u>increasing</u>, density of merchantable trees is <u>decreasing</u>
 - Basal Area and volume are declining
 - Clearly no longer an even-aged stand (*i.e.* multi-cohort)

DISCUSSION

- What is expected the future stand development?
- Will it follow a successional trajectory to white spruce?
- How should this be modelled for forest management purposes?
- What is the right growth (and yield) trajectory for these stands?

- Two different Alberta growth models estimate (left)... no-decline or slow decline
- Current Alberta practice with GYPSY model is to implement a decline to a steady state of 50-100 m³/ha past a target age (right-side)

• This is what the Alberta PSP data say ... peak, then rapid decline but no data beyond that point

- We need a way to represent these stands, because with the introduction of caribou areas (locked down for 100 years at a time)
 - representing aspen that is old now 100 years into the future will be important to timber supply determination
 - Discussion what do you think this PSP 588 old aspen (aged 133 years) will look like 50 years from now?

INTRODUCTION

- Even-aged aspen is common in the boreal forest, but...
- Due to successful fire prevention, many areas of the boreal forest have old and very old aspen
- These stands are <u>uneven-aged</u> multicohort 120 - 180 year old stands – which is a paradigm shift
- Introduction of constraints (e.g. caribou management zones with deferred harvest), will continue this paradigm
- Yield curves and modeling old multicohort stands is challenging (but there are solutions!)

MANITOBA AND SASKATCHEWAN OLD ASPEN

	Swan River	
Canora Kamsack		
Yorkton e Esterhazy	Russell	Dauphin Sainte Rose du Lac Riding Mountain National Park of Canada
Whitewood Mooso	min	Neepawa Minnedosa

Riding Mountain National Park, Manitoba

- 1,481 Permanent Sample Plots (PSPs) were established by the federal government from 1946 to 1967
- All species, all sizes (1-inch dbh classes no minimum size)
- PSP stand ages were 120-150 years old in 1947
- Stand ages 170-200 years old in 2002 (3rd or 4th remeasurement)
- 50 years of **growth** data on 284 PSPs

Riding Mountain National Park, Manitoba

• Dr. Norm Kenkel (U of M) analyzed the Riding Mountain PSP data

Riding Mountain National Park, Manitoba

• Dr. Norm Kenkel (U of M) analyzed the Riding Mountain PSP data

Riding Mountain National Park, Manitoba

- Example PSP 1027
- In 1946 had 80% aspen, 20% spruce
- In 2002 35% aspen (2017 20% aspen)

Riding Mountain National Park, Manitoba

- In 1946 had 80% aspen, 20% spruce
- By 2002, aspen declined and spruce dominated the stand

												_			•							_	_					_				
						DBH (CLASS	6 (inches) - liv	e on	ly																					
																																# trees per plot
lot Numbe	rement N	Pate (YR	(Mo)	(Day)	Species	0-05	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	(live)
1027	1	1948	7	30	ТА			2							2	2				1												7
1027	2	1958	8	6	ТА				1	1					1		2					1										6
1027	3	1968	6	13	ТА		45	2	1	1							1	1				1										52
1027	4	2002	7	7	ТА						3	4		1																		8
1027	1	1948	7	30	WS	2	4	8			1																					15
1027	2	1958	8	6	WS		1	6	4	8			2	1																		22
1027	3	1968	6	13	WS		1	1	2	2	5	5	3		1	2																22
1027	4	2002	7	7	WS						1	2	1	1	3	1	2	1														12

Aerial view of very old area with mostly shrubs (Dr. Norm Kenkel U of M) – common over 1,000's of hectares

Duck Mountain Provincial Forest – in Manitoba

- In the Duck Mountain we realized that the majority of our aspen and aspen mixedwood stands were two-cohort or even three-cohort)
- These stands were much older than we realized (71% were 100 years to 180 years old!)
- our Forest Management Plan required we model 200 years in the future (some stands 180 yrs old at time zero – now add 200 years!)

Duck Mountain Provincial <u>Park</u> – in Saskatchewan

- unnaturally old, and unfortunately is not regenerating!
- due to a lack of primary stand-replacing forest disturbances such as fire
- The Park's 1995 management plan warned of the significant age class imbalance, and strongly advocated wildfire, prescribed burns, and harvesting disturbances to trigger regeneration and balance seral stages
- Recent attempts at prescribed crown fires did not work, due to the low density of the stands
- In 2016 we began ecological restoration harvesting

Duck Mountain Provincial <u>Park</u> – in Saskatchewan

Hazel shrubland with scattered aspen trees (as far as 40 m between trees – as low as 6 trees per ha)

 We couldn't harvest this

Duck Mountain Provincial <u>Park</u> – in Saskatchewan

Areas we have harvested have regenerated well! (despite the very old ages)

• In the LP Swan River Forest Management Plan, we needed successional pathways for forest modeling over 200 years, while starting at time zero with old stands.

• Three (3) observed and very different successional pathways starting from old aspen getting older

Time ->

1. Gap-phase regeneration continues

2. Spruce takes over as aspen breaks up

3. SHRUBS take over (non-forested!) Hazel

- Three (3) old aspen successional pathways
- ?... is there a way to tell which you will get?
 - 1. Gap-phase regeneration continues
 - 2. Spruce takes over as aspen breaks up
 - 3. SHRUBS take over (non-forested!) Hazel
- In the Manitoba Duck Mountain, #1 (aspen gap-phase) is occurring in <u>pure</u> aspen, but #2 (white spruce increase) happens in aspenwhite spruce mixedwoods
- Note: white spruce germinates on nurse logs on forest floor – see picture to right
- your forest inventory (white spruce 20-30%+) could guide you
- #3 SHRUBS occurs when aspen is not regenerating, <u>and</u> white spruce is not regenerating (*lack of nurse logs?*)

- Note: white spruce germinates on nurse logs on forest floor (aspen or conifer nurse logs)
- Log must be touching the ground to stay moist, forming a suitable germination microsite

• This 2 - 4 m tall Mountain maple and hazel shrubland with scattered white spruce may not be able to carry a much-needed wildfire that would allow regeneration

CONCLUSIONS

Forest management options

- **Disturbance** (harvest or fire) typically results in a fullystocked even-aged aspen stand (reset!)
 - Note: very low-density old aspen may not carry a crown fire
 - Intensive treatment of bulldoze flat then prescribed burn?
- No disturbance with gap-phase regeneration in aspen there will be multi-cohort forest canopy
 - Expect lower volumes (50% to 70% of peak volume)
 - Potentially higher biodiversity and wildlife habitat due to multiple stories, abundant shrubs

CONCLUSIONS

Modeling options

- remeasure your oldest Permanent Sample Plots
- Don't abandon old PSPs remeasure them
- Reject the 'death-age' assumption (volume crashes to zero)
- Consider multi-cohort yield curves, stratified by:
 - pure aspen
 - Aspen with spruce
 - Spruce mixedwoods
 - Or whatever is appropriate for your landbase
- Consider funding more PSP remeasurements in Riding Mountain National Park – it's now **75 years** of growth intervals (joint projects anyone?)

